Title: | Particle Tracking and Demography |
---|---|
Description: | Obtain population density and body size structure, using video material or image sequences as input. Functions assist in the creation of image sequences from videos, background detection and subtraction, particle identification and tracking. An artificial neural network can be trained for noise filtering. The goal is to supply accurate estimates of population size, structure and/or individual behavior, for use in evolutionary and ecological studies. |
Authors: | Marjolein Bruijning, Marco D. Visser, Caspar A. Hallmann, Eelke Jongejans |
Maintainer: | Marjolein Bruijning <[email protected]> |
License: | GPL-2 |
Version: | 0.6 |
Built: | 2025-03-06 04:49:38 UTC |
Source: | https://github.com/marjoleinbruijning/trackdem |
createBackground
detects the still background,
containing all motionless pixels (non particles). Three different methods
to detect the background can be used.
createBackground(colorimages, method = "mean")
createBackground(colorimages, method = "mean")
colorimages |
Array of class 'TrDm' containing all images, obtained by
|
method |
Use |
Array of class 'TrDm' and 'colorimage' containing detected background.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") plot(stillBack) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") plot(stillBack) ## End(Not run)
createImageSeq
creates an image sequences (.png) using
video files as input. All movies within a directory will
be converted into an image sequence.
For each movie, a new directory is created containing the recorded date and
name of the movie.
createImageSeq( moviepath = "Movies", imagepath = "ImageSequences", x = 1920, y = 1080, fps = 15, nsec = 2, start = NULL, stop = NULL, ext = "MTS", libavpath = "avconv", exiftoolpath = "exiftool", pythonpath = "python", verbose = FALSE, logfile = FALSE )
createImageSeq( moviepath = "Movies", imagepath = "ImageSequences", x = 1920, y = 1080, fps = 15, nsec = 2, start = NULL, stop = NULL, ext = "MTS", libavpath = "avconv", exiftoolpath = "exiftool", pythonpath = "python", verbose = FALSE, logfile = FALSE )
moviepath |
Path to existing directory containing the video files. By default, 'Movies' is used. |
imagepath |
Path to location of a directory in which image sequences should be saved. By default, 'ImageSequences' is used (and created if not existing). |
x |
Number of pixels in horizontal direction; default is 1920 (HD). |
y |
Number of pixels in vertical direction; default is 1080 (HD). |
fps |
Frames per second, default is 15. |
nsec |
Duration of movie that is exported, default is 2 seconds.
When movie length is greater than |
start |
Start time (in seconds) from where the video is converted (optional). By
default, the |
stop |
End time (in seconds) from where the video is converted (optional). By
default, the |
ext |
The extension of the video. Default is |
libavpath |
Path to location where the executable file for libav
can be found (named 'avconv.exe'), in case it is not found automatically,
e.g. |
exiftoolpath |
Path to location where the executable file for
ExifTool can be found, in case it is not found automatically.
For instance, use |
pythonpath |
Path to location where the executable file for
Python 2.7 can be found, in case it is not found automatically. For
instance, use |
verbose |
Logical. By default FALSE. Set to TRUE will print additional information. |
logfile |
Logical. By default FALSE. Set to TRUE will create a log file in the working directory. |
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: createImageSeq(moviepath="Movies",imagepath="ImageSequences", nsec=3,ext="AVI") ## End(Not run)
## Not run: createImageSeq(moviepath="Movies",imagepath="ImageSequences", nsec=3,ext="AVI") ## End(Not run)
This function can help to find a appropriate maximum value for linking
a particle to another particle (parameter L in function trackParticles
)
findMaxCost(particles, frame = 1, colorimages = NULL)
findMaxCost(particles, frame = 1, colorimages = NULL)
particles |
Object of class 'particles', obtained using |
frame |
Number specifying which frame to use. Default is frame 1. |
colorimages |
Array containing original color images. By default, the original color images are obtained from the global environment. |
Returns the number that is interactively chosen by the user. Use
this value in trackParticles
.
Marjolein Bruijning
## Not run: partIden <- identifyParticles(sbg=allImages, threshold=-0.05) maxcost <- findMaxCost(partIden,frame=1) records <- trackParticles(partIden,L=maxcost,R=1) ## End(Not run)
## Not run: partIden <- identifyParticles(sbg=allImages, threshold=-0.05) maxcost <- findMaxCost(partIden,frame=1) records <- trackParticles(partIden,L=maxcost,R=1) ## End(Not run)
This function can help to find the minimum and maximum particle size
in pixels, to use in identifyParticles
.
findPixelRange(colorimages, frame = 1)
findPixelRange(colorimages, frame = 1)
colorimages |
Array containing original color images. |
frame |
Number specifying which frame to use. Default is frame 1. |
Marjolein Bruijning
## Not run: dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages) allImages <- subtractBackground(stillBack) findPixelRange(allFullImages,frame=10) ## End(Not run)
## Not run: dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages) allImages <- subtractBackground(stillBack) findPixelRange(allFullImages,frame=10) ## End(Not run)
This function can help to find a threshold value to distinguish noise from particles of interest.
findThreshold(images, frame = 1, colorimages = NULL)
findThreshold(images, frame = 1, colorimages = NULL)
images |
Array containing images containing all moving particles,
as obtained from |
frame |
Number specifying which frame to use. Default is frame 1. |
colorimages |
Array containing original color images. By default, the original color images are obtained from the global environment. |
Returns the number that is interactively chosen by the user. Use
this threshold value in identifyParticles
.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) thr <- findThreshold(allImages,frame=10) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) thr <- findThreshold(allImages,frame=10) ## End(Not run)
identifyParticles
identifies moving particles using the
subtracted images obtained from subtractBackground
. Function
uses Connected Component Labeling and obtains particle statistics based on
code developed for the orphaned
package SDMTools (written by Jeremy VanDerWal).
identifyParticles( sbg, threshold = -0.1, pixelRange = NULL, qthreshold = NULL, select = "dark", colorimages = NULL, autoThres = FALSE, perFrame = FALSE, frames = NULL )
identifyParticles( sbg, threshold = -0.1, pixelRange = NULL, qthreshold = NULL, select = "dark", colorimages = NULL, autoThres = FALSE, perFrame = FALSE, frames = NULL )
sbg |
Array containing images containing all moving particles,
as obtained from |
threshold |
Thresholds for including particles. A numeric vector
containing three values; one for each color. Otherwise, supply one value
which is to be used for all three colors. For a chosen quantile
for each frame, use |
pixelRange |
Default is |
qthreshold |
Default is |
select |
Select dark particles ( |
colorimages |
Array containing original color images. By default, the original color images are obtained from global environment. |
autoThres |
Logical. |
perFrame |
Logical. If |
frames |
When |
Returns a dataframe of class 'TrDm' and 'particles', containing particle statistics with identified particles for each frame
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) plot(partIden) summary(partIden) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) plot(partIden) summary(partIden) ## End(Not run)
loadImages
loads png images as three dimensional arrays.
The objects created through the function can be used for image analysis.
loadImages( dirPictures, filenames = NULL, nImages = 1:30, xranges = NULL, yranges = NULL )
loadImages( dirPictures, filenames = NULL, nImages = 1:30, xranges = NULL, yranges = NULL )
dirPictures |
The path of the folder where the images can be found. |
filenames |
Default is |
nImages |
Numeric vector specifying which images in the directory
should be loaded; default is |
xranges |
By default the full image is loaded; specify to subset the number of columns. |
yranges |
By default the full image is loaded; specify to subset the number of rows. |
Array of class 'TrDm' and 'colorimages' containing all loaded images.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) plot(allFullImages) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) plot(allFullImages) ## End(Not run)
manuallySelect
opens a graphic user interface to create
training data for a neural net by manually selecting true and
false positives (i.e. correctly identified particles and noise, respectively).
manuallySelect(particles, colorimages = NULL, frames = NULL)
manuallySelect(particles, colorimages = NULL, frames = NULL)
particles |
A data frame of class 'TrDm' with particle statistics for
each frame, obtained by |
colorimages |
An array with the original full color images, in order
to plot on the original images. If |
frames |
A vector defining the frame(s) that should be used. Default
is |
List containing three elements: true positives, false positives, and the evaluated frame.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain='square', h=0.01,rho=0.9,movingNoise=TRUE, parsMoving = list(density=20, duration=10, size=1, speed = 10, colRange = c(0,1)), sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) # select the nframes with the most identified particles nframes <- 3 frames <- order(tapply(partIden$patchID,partIden$frame,length), decreasing=TRUE)[1:nframes] mId <- manuallySelect(particles=partIden,frame=frames) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain='square', h=0.01,rho=0.9,movingNoise=TRUE, parsMoving = list(density=20, duration=10, size=1, speed = 10, colRange = c(0,1)), sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) # select the nframes with the most identified particles nframes <- 3 frames <- order(tapply(partIden$patchID,partIden$frame,length), decreasing=TRUE)[1:nframes] mId <- manuallySelect(particles=partIden,frame=frames) ## End(Not run)
mergeTracks
attempts to merge to two track objects as obtained by
trackParticles
.
mergeTracks(records1, records2, L = NULL, weight = NULL, logsizes = FALSE)
mergeTracks(records1, records2, L = NULL, weight = NULL, logsizes = FALSE)
records1 |
Object of class 'tracked',
obtained using |
records2 |
Object of class 'tracked',
obtained using |
L |
Numeric. Maximum cost for linking a particle to another particle.
When the cost is larger,
particles will be not be linked (resulting in the begin or end of a segment).
If |
weight |
Vector containing 3 weights to calculate costs. Depending
on the study system user may want to value certain elements over others.
Weights are ordered as follows;
first number gives the weight for differences in x and y coordinates;
second number
gives the weight for particle size differences. Note that the
difference between the predicted location and the observed location is
not taken into account in this function. If |
logsizes |
Logical. Default is |
A list of class 'TrDm' and 'records'. Use 'summary' and 'plot'.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: ## Create image sequence dir.create("images") traj <- simulTrajec(path="images", nframes=60,nIndividuals=20,domain="square", h=0.01,rho=0.9,sizes=runif(20,0.004,0.006)) ## Analyse first part dir <- "images" allFullImages1 <- loadImages (dirPictures=dir,nImages=1:30) stillBack1 <- createBackground(allFullImages1) allImages1 <- subtractBackground(bg=stillBack1) partIden1 <- identifyParticles(sbg=allImages1, pixelRange=c(1,500), threshold=-0.1) records1 <- trackParticles(partIden1,L=20,R=2) ## Analyse second part allFullImages2 <- loadImages (dirPictures=dir,nImages=31:60) stillBack2 <- createBackground(allFullImages2) allImages2 <- subtractBackground(bg=stillBack2) partIden2 <- identifyParticles(sbg=allImages2, pixelRange=c(1,500), threshold=-0.1) records2 <- trackParticles(partIden2,L=20,R=2) ## Merge tracks records <- mergeTracks(records1,records2) plot(records,colorimages=allFullImages1,type="trajectories",incThres=10) ## End(Not run)
## Not run: ## Create image sequence dir.create("images") traj <- simulTrajec(path="images", nframes=60,nIndividuals=20,domain="square", h=0.01,rho=0.9,sizes=runif(20,0.004,0.006)) ## Analyse first part dir <- "images" allFullImages1 <- loadImages (dirPictures=dir,nImages=1:30) stillBack1 <- createBackground(allFullImages1) allImages1 <- subtractBackground(bg=stillBack1) partIden1 <- identifyParticles(sbg=allImages1, pixelRange=c(1,500), threshold=-0.1) records1 <- trackParticles(partIden1,L=20,R=2) ## Analyse second part allFullImages2 <- loadImages (dirPictures=dir,nImages=31:60) stillBack2 <- createBackground(allFullImages2) allImages2 <- subtractBackground(bg=stillBack2) partIden2 <- identifyParticles(sbg=allImages2, pixelRange=c(1,500), threshold=-0.1) records2 <- trackParticles(partIden2,L=20,R=2) ## Merge tracks records <- mergeTracks(records1,records2) plot(records,colorimages=allFullImages1,type="trajectories",incThres=10) ## End(Not run)
plot
methods for class 'TrDm'.plot
methods for class 'TrDm'.
## S3 method for class 'TrDm' plot( x, frame = 1, type = NULL, incThres = NULL, colorimages = NULL, cl = 1, path = NULL, name = "animation", libavpath = NULL, ... )
## S3 method for class 'TrDm' plot( x, frame = 1, type = NULL, incThres = NULL, colorimages = NULL, cl = 1, path = NULL, name = "animation", libavpath = NULL, ... )
x |
An object of class 'TrDm'. |
frame |
Choose which frame to be plotted. By default, |
type |
Only for 'tracked' objects. By default, both trajectories and
size distribution are plotted. Choose
|
incThres |
Minimum length of tracked segments for particles to be included. By default an automated threshold is calculated. Only for 'tracked' objects. |
colorimages |
Original color images. By default, original color images are obtained from the global environment. |
cl |
When plotting a subtracted background image, choose which color layer
is plotted. By default, |
path |
When creating an animation, choose directory in which images are saved temporarily, and where the animation should be saved. |
name |
of animation; by default |
libavpath |
Path to location where the executable file for libav
can be found (named 'avconv.exe'), in case it is not found automatically,
e.g. |
... |
further arguments passed to |
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
print
methods for class 'TrDm'.print
methods for class 'TrDm'.
## S3 method for class 'summaryTrDm' print(x, ...)
## S3 method for class 'summaryTrDm' print(x, ...)
x |
Object of class 'summaryTrDm'. |
... |
Further arguments passed to or from other methods. |
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
print
methods for class 'TrDm'.print
methods for class 'TrDm'.
## S3 method for class 'TrDm' print(x, ...)
## S3 method for class 'TrDm' print(x, ...)
x |
Object of class 'TrDm'. |
... |
Further arguments passed to or from other methods. |
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
runBatch
analyzes all image sequences in a specified
directory. Use this function when settings have been optimized
previously on a single or selection of movies/image sequences.
runBatch( path, settings = NULL, dirnames = NULL, nImages = 1:30, pixelRange = NULL, threshold = -0.1, qthreshold = NULL, select = "dark", nn = NULL, incThres = NULL, plotOutput = FALSE, plotType = "trajectories", L = 20, R = 2, weight = c(1, 1, 1), autoThres = FALSE, perFrame = FALSE, methodBg = "mean", frames = NULL, saveAll = FALSE )
runBatch( path, settings = NULL, dirnames = NULL, nImages = 1:30, pixelRange = NULL, threshold = -0.1, qthreshold = NULL, select = "dark", nn = NULL, incThres = NULL, plotOutput = FALSE, plotType = "trajectories", L = 20, R = 2, weight = c(1, 1, 1), autoThres = FALSE, perFrame = FALSE, methodBg = "mean", frames = NULL, saveAll = FALSE )
path |
A character vector of path name that contains all directories with image sequences. |
settings |
Object of class 'tracked' containing all optimized settings
in attributes,
as obtained from |
dirnames |
If not all image sequences should be analyzed, specify which files to use as a character string. |
nImages |
See |
pixelRange |
|
threshold |
|
qthreshold |
|
select |
|
nn |
Name of artificial neural net if apply it to images. Default
is |
incThres |
Minimum number of frames that a particle must be present. By default, automated estimate is used. |
plotOutput |
Default is |
plotType |
Default is 'trajectories'. Other options are 'sizes' and 'animation'. |
L |
See |
R |
See |
weight |
See |
autoThres |
|
perFrame |
|
methodBg |
See |
frames |
|
saveAll |
Logical. Set |
Dataframe with estimated population size for each image sequence.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
loadImages
, createBackground
,
subtractBackground
, identifyParticles
,
trackParticles
.
## Not run: ## Simulate 3 image sequences wd <- getwd() folders <- paste0(rep("images",3),1:3) populations <- c(15,25,50) dir.create("./batchTest") setwd("./batchTest") for(i in 1:length(folders)){ dir.create(folders[i]) traj <- simulTrajec(path=folders[i], nframes=30,nIndividuals=populations[i], h=0.01,rho=0.9, sizes=runif(populations[i],0.004,0.006)) } setwd(wd) batchpath <- "./batchTest" results <- runBatch(path=batchpath, nImages=1:30,threshold=-0.1,select='dark', pixelRange=c(1,100),L=50,R=3, incThres=10) results ## End(Not run)
## Not run: ## Simulate 3 image sequences wd <- getwd() folders <- paste0(rep("images",3),1:3) populations <- c(15,25,50) dir.create("./batchTest") setwd("./batchTest") for(i in 1:length(folders)){ dir.create(folders[i]) traj <- simulTrajec(path=folders[i], nframes=30,nIndividuals=populations[i], h=0.01,rho=0.9, sizes=runif(populations[i],0.004,0.006)) } setwd(wd) batchpath <- "./batchTest" results <- runBatch(path=batchpath, nImages=1:30,threshold=-0.1,select='dark', pixelRange=c(1,100),L=50,R=3, incThres=10) results ## End(Not run)
simulTrajec
simulates movement trajectories within a
bounded space, movements are set with speed (h
) and may be correlated
in direction (rho
). Function simulates movement of particles in a video
sequence of certain number of frames (nframes
) in length. Images
are saved as png files.
simulTrajec( nframes = 20, nIndividuals = 10, h = 0.02, rho = 0, domain = "square", correctBoundary = TRUE, sizes = stats::runif(nIndividuals) * 0.012 + 0.01, staticNoise = FALSE, movingNoise = FALSE, name = "trajectory", path = NULL, parsMoving = list(density = 10, duration = 10, size = 1, speed = 10, colRange = c(0, 1)), parsStatic = list(density = 10, blur = TRUE, blurCoef = 0.025, sizes = NULL, col = "red"), width = 480, height = NULL )
simulTrajec( nframes = 20, nIndividuals = 10, h = 0.02, rho = 0, domain = "square", correctBoundary = TRUE, sizes = stats::runif(nIndividuals) * 0.012 + 0.01, staticNoise = FALSE, movingNoise = FALSE, name = "trajectory", path = NULL, parsMoving = list(density = 10, duration = 10, size = 1, speed = 10, colRange = c(0, 1)), parsStatic = list(density = 10, blur = TRUE, blurCoef = 0.025, sizes = NULL, col = "red"), width = 480, height = NULL )
nframes |
Number of time frames(steps). |
nIndividuals |
Number of individual trajectories. |
h |
Displacement speed in pixels. |
rho |
Correlation parameter for angle of displacement. |
domain |
One of |
correctBoundary |
Logical. |
sizes |
Vector of sizes for each simulated particle of length nIndividuals. |
staticNoise |
Logical. If |
movingNoise |
Logical. If |
name |
Stem of the filename. |
path |
to location where the created images should be saved. By default the working directory is used. |
parsMoving |
List of parameters used to generate moving noise
these include the density of noise particles ( |
parsStatic |
List of parameters used to generate static noise.
These include the density (per image) of noise particles ( |
width |
of created png image. By default 480. |
height |
of create png image. If |
Caspar A. Hallmann, Marjolein Bruijning & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence and save as png's in the working directory. traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence and save as png's in the working directory. traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## End(Not run)
subtractBackground
subtracts each image from a
previously created still background.
The objects created through the function contain all changing
pixels (i.e. movement).
subtractBackground(bg, colorimages = NULL)
subtractBackground(bg, colorimages = NULL)
bg |
Array containing still background, as returned from
|
colorimages |
Array containing all frames, obtained by
|
Returns array of class 'TrDm' and 'sbg' with same size as images, subtracted from background.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) plot(allImages) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) plot(allImages) ## End(Not run)
summary
methods for class 'TrDm'.summary
methods for class 'TrDm'.
## S3 method for class 'TrDm' summary(object, incThres = NULL, funSize = stats::median, ...)
## S3 method for class 'TrDm' summary(object, incThres = NULL, funSize = stats::median, ...)
object |
an object of class 'TrDm'. |
incThres |
Minimum length of tracked segments for particles to be included. By default an automated threshold is calculated. Only for 'tracked' objects. |
funSize |
Statistic to be calculated to obtain particle sizes. By
default |
... |
further arguments passed to or from other methods. |
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
Fits multiple neural networks to a dataset; data set has been randomly assigned to each of three categories: train, validate and test. A final neural net is selected based on a fit statistic (either precision, recall or the F1-score). All neural networks are trained to the training dataset. Neural network may vary in the number of hidden layers. Classification thresholds are selected based on the validation data, and then the final neural network is selected based on the test data.
testNN( dat, stat = "F", maxH = 5, repetitions = 3, prop = c(8, 1, 1), predictors = NULL, pca = TRUE, thr = 0.95, ... )
testNN( dat, stat = "F", maxH = 5, repetitions = 3, prop = c(8, 1, 1), predictors = NULL, pca = TRUE, thr = 0.95, ... )
dat |
a previously constructed dataset obtained from
|
stat |
Fit statistic. May be |
maxH |
maximum number of hidden layers to test note that more layers will require more time to fit. |
repetitions |
the number of repetitions for the neural network's training. |
prop |
the proportion or ratio for each class c(training, validation,test). |
predictors |
Optional. A set of custom predictors
for the neural network. Default uses all columns in |
pca |
Logical. |
thr |
Threshold for pca (above). |
... |
additional parameters, passed to neuralnet. |
The neural networks may be selected based on precision, recall or a F1-score (default). In binary classification, precision is the number of correct positive results divided by the number of all positive predictions. Recall is the number of correct positive results divided by the number of positive results that could have been returned if the algorithm was perfect. A F1 score (F-score/ F-measure) is a statistical measure of accuracy. F1 scores considers both the precision and the recall. A F1 score may be seen as a weighted average (harmonic mean) of the precision and recall. Precision, recall and F1 scores are at best 1 and at worst 0.
Returns trained artificial neural net.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain='square', h=0.01,rho=0.9,movingNoise=TRUE, parsMoving = list(density=20, duration=10, size=1, speed = 10, colRange = c(0,1)), sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) nframes <- 3 frames <- order(tapply(partIden$patchID,partIden$frame,length), decreasing=TRUE)[1:nframes] mId <- manuallySelect(particles=partIden,frame=frames) finalNN <- testNN(dat=mId,repetitions=10,maxH=4,prop=c(6,2,2)) summary(finalNN) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain='square', h=0.01,rho=0.9,movingNoise=TRUE, parsMoving = list(density=20, duration=10, size=1, speed = 10, colRange = c(0,1)), sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) nframes <- 3 frames <- order(tapply(partIden$patchID,partIden$frame,length), decreasing=TRUE)[1:nframes] mId <- manuallySelect(particles=partIden,frame=frames) finalNN <- testNN(dat=mId,repetitions=10,maxH=4,prop=c(6,2,2)) summary(finalNN) ## End(Not run)
trackdem - Particle Tracking and Demography
Marjolein Bruijning, Caspar A. Hallmann, Marco D. Visser, Eelke Jongejans
trackParticles
reconstructs trajectories by linking particles.
trackParticles( particles, L = 50, R = 2, weight = c(1, 1, 1), costconstant = FALSE, logsizes = FALSE )
trackParticles( particles, L = 50, R = 2, weight = c(1, 1, 1), costconstant = FALSE, logsizes = FALSE )
particles |
Object of class 'particles',
obtained using |
L |
Numeric. Maximum cost for linking a particle to another particle.
When the cost is larger,
particles will be not be linked (resulting in the begin or end of a segment).
Default set at |
R |
Integer. Link to how many subsequent frames? Default set
at |
weight |
Vector containing 3 weights to calculate costs. Depending on the study system, users may want to value certain elements over others. For instance, when individuals can vary in size over frames (which happens when objects move away or towards a camera) the "size" weight may be decreased. Weights are ordered as follows; first number gives the weight for differences in x and y coordinates; second number gives the weight for particle size differences; third number gives the difference between the predicted location and the observed location. The latter is calculated using the location of the identified particle in the previous frame. |
costconstant |
Logical. Default is |
logsizes |
Logical. Default is |
A list of class 'TrDm' and 'records'. Use 'summary' and 'plot'.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) records <- trackParticles(particles,L=40,R=2) summary(records) plot(records,type="trajectories") ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain="square", h=0.01,rho=0.9, sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) records <- trackParticles(particles,L=40,R=2) summary(records) plot(records,type="trajectories") ## End(Not run)
Apply trained artificial neural network to particleStat object.
## S3 method for class 'particles' update(object, neuralnet, pca = TRUE, colorimages = NULL, sbg = NULL, ...)
## S3 method for class 'particles' update(object, neuralnet, pca = TRUE, colorimages = NULL, sbg = NULL, ...)
object |
Object of class 'nnTrackdemObject'. |
neuralnet |
Trained neural net obtained from |
pca |
Logical. By default |
colorimages |
An array with the original full color images, in order
to plot on the original images, obtained by |
sbg |
Images subtracted from background, as obtained by
|
... |
further arguments passed to or from other methods. |
Data frame class 'particles', containing updated particle statistics (excluding particles that have been filtered out by the neural net).
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain='square', h=0.01,rho=0.9,movingNoise=TRUE, parsMoving = list(density=20, duration=10, size=1, speed = 10, colRange = c(0,1)), sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) nframes <- 3 frames <- order(tapply(partIden$patchID,partIden$frame,length), decreasing=TRUE)[1:nframes] mId <- manuallySelect(particles=partIden,frame=frames) finalNN <- testNN(dat=mId,repetitions=10,maxH=4,prop=c(6,2,2)) partIdenNN <- update(particles=partIden,neuralnet=finalNN) ## End(Not run)
## Not run: dir.create("images") ## Create image sequence traj <- simulTrajec(path="images", nframes=30,nIndividuals=20,domain='square', h=0.01,rho=0.9,movingNoise=TRUE, parsMoving = list(density=20, duration=10, size=1, speed = 10, colRange = c(0,1)), sizes=runif(20,0.004,0.006)) ## Load images dir <- "images" allFullImages <- loadImages (dirPictures=dir,nImages=1:30) stillBack <- createBackground(allFullImages,method="mean") allImages <- subtractBackground(stillBack) partIden <- identifyParticles(allImages,threshold=-0.1, pixelRange=c(3,400)) nframes <- 3 frames <- order(tapply(partIden$patchID,partIden$frame,length), decreasing=TRUE)[1:nframes] mId <- manuallySelect(particles=partIden,frame=frames) finalNN <- testNN(dat=mId,repetitions=10,maxH=4,prop=c(6,2,2)) partIdenNN <- update(particles=partIden,neuralnet=finalNN) ## End(Not run)